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Abstract Stationary patterns of a two-cell coupled isothermal chemical system with
arbitrary powers of autocatalysis are considered. Firstly, we obtain the stability of the
unique positive constant equilibrium solution for the system. Then, based on a priori
estimates, non-existence and existence of nontrivial steady state solutions are shown
by using implicit function theorem and topological degree theory, respectively. The
effects of autocatalysis order and diffusion coefficients to the pattern formation are
discussed.
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1 Introduction

In the spatially inhomogeneous case, a lot of coupled partial differential equations have
been proposed by chemists, biologists and mathematicians to model problems arising
from various subjects such as chemical reactions, genetics and population dynamics.
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The existence of non-constant time-independent positive solutions, also called station-
ary patterns, is an indication of the richness of the corresponding partial differential
equation dynamics.

In 1952, Turing published a paper “The chemical basis of morphogenesis” [1],
which is now regarded as the foundation of basic chemical theory or reaction–diffu-
sion theory of morphogenesis. Turing suggested that, under certain conditions, chem-
icals can react and diffuse in such a way as to produce non-constant equilibrium
solutions, which represent spatial patterns of chemical or morphogenesis concen-
tration. So far, a variety of patterns have been observed and studied in disparate sys-
tems. These include chemical models such as the activator-inhibitor Gierer–Meinhardt
model [2,3], the Brusselator model [4,5], the Sel’kov model [6,7], the Gray–Scott
model [8,9], the Noyes-Field model for Belousov-Zhabotinskii reaction [10], and the
biological models include the competition model [11,12] and the predator-prey model
[13–18].

In biochemical procedures autocatalytic chemical reactions have been identified
as one of main nonlinear mechanisms [19–21]. A simplest autocatalytic chemical
reaction is of the following form:

A + m B −→ (m + 1)B,

where A is the reactant and B is the autocatalyst, and m is the order of the
autocatalysis. Previous studies mainly concentrated on the situation when m is
a positive integer, in particular, (i) m = 1, i.e., quadratic autocatalysis [22–
24]; (ii) m = 2, cubic autocatalysis [25–28]. However, in general, the order
m in realistic models is determined empirically, and so m is not necessarily
an integer (see Kay et al. [29]). Here we discuss the general case m > 0.
We consider the prototype chemical reaction scheme based on arbitrary order
autocatalysis

P
k0−→ A, A + m B

k1−→ (m + 1)B, B
k2−→ C, A

k3−→ B,

in which P, A, B and C are certain chemical species with molar concentrations
p, a, b and c, respectively, and ki (i = 0, 1, 2, 3) are constants representing the
reaction rates. We assume that the concentration of P and C are independent of
time, and the concentration of P remains constant at its initial value p0. Moreover,
it is assumed that the cells are sufficiently thin so that transverse diffusion across
them can be considered to be instantaneous (see [25]). So we have two identical
regions, divided by a semipermeable membrane which allows the passage of aut-
ocatalyst B only, with some reaction taking place in each region. The equations
are obtained as in [25], but now with the arbitrary autocatalysis order included,
namely
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da1

dt̄
= k0 p0 − k1a1bm

1 − k3a1,

db1

dt̄
= k1a1bm

1 + k3a1 − k2b1 + β(b2 − b1),

da2

dt̄
= k0 p0 − k1a2bm

2 − k3a2,

db2

dt̄
= k1a2bm

2 + k3a2 − k2b2 + β(b1 − b2),

(1.1)

where (a1, b1) and (a2, b2) are the concentrations in cells 1 and 2, respectively, β is
the dimensionless coupling parameter, and m > 0 is the order of the autocatalysis.

For simplicity, we use the following scaling to (1.1):

u =
(k1

k2

) 1
m

a1, v =
(k1

k2

) 1
m

b1, w =
(k1

k2

) 1
m

a2, z =
(k1

k2

) 1
m

b2, t = k2 t̄ .

Then system (1.1) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dt
= a − uvm − bu,

dv

dt
= uvm + bu − v + c(z − v),

dw

dt
= a − wzm − bw,

dz

dt
= wzm + bw − z + c(v − z),

where a =
(

k1
k2

) 1
m k0 p0

k2
, b = k3

k2
, and c = β

k2
.

To consider the reaction scheme (1.1) taking place in a closed vessel without stir-
ring, we have the following reaction–diffusion system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1�u = a − uvm − bu in � × (0,∞),

vt − d2�v = uvm + bu − v + c(z − v) in � × (0,∞),

wt − d1�w = a − wzm − bw in � × (0,∞),

zt − d2�z = wzm + bw − z + c(v − z) in � × (0,∞),

∂νu = ∂νv = ∂νw = ∂νz = 0 on ∂� × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) on �,

w(x, 0) = w0(x), z(x, 0) = z0(x) on �,

(1.2)
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where d1 and d2 are the diffusion coefficients of reactant A and autocatalyst B, respec-
tively. The admissible initial data u0(x), v0(x), w0(x) and z0(x) are smooth nonneg-
ative functions which are not identically zero.

In the present paper, our main interest is in the stationary patterns generated by the
above reaction–diffusion system. This leads us to investigate the associated steady-
state problem, which satisfies the following coupled elliptic system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−d1�u = a − uvm − bu in �,

−d2�v = uvm + bu − v + c(z − v) in �,

−d1�w = a − wzm − bw in �,

−d2�z = wzm + bw − z + c(v − z) in �,

∂νu = ∂νv = ∂νw = ∂νz = 0 on ∂�.

(1.3)

Here, � ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary ∂�,
a, b, c, m, d1, d2 are positive constants, ν is the outward unit normal vector on ∂�

and ∂ν = ∂
∂ν

. The homogeneous Neumann boundary condition means that system is
self-contained with zero flux across the boundary.

In a series of papers, we have looked at the stationary patterns that arise in a simple
prototype chemical reaction due to chemical coupling. In one spatial dimension, Leach
and Wei [30] considered pattern formation in a coupled system of reaction–diffusion
equations. Hubbard et al. [31] extend their preliminary work of [30] by considering
the spatial dimension N = 2. Ghergu [5] studied the non-constant steady states for
Brusselator type systems in any spatial dimension. For the more information about
pattern formation in coupled chemical systems, one may refer to [8,32–35], etc. In the
case of two-cell coupled chemical systems, Hill and Merkin [26] considered a coupled
system whereby two identical cells are coupled via the diffusive interchange of the
autocatalyst in one spatial dimension. Zhang and Liu [36] discussed the spatiotemporal
structures arising in two identical cells, each governed by arbitrary order autocatala-
tor kinetics and coupled via the diffusive interchange of a reactant. In [37,38], You
and Zhou proved the existence of a global attractor for the solution semiflow of the
coupled two-cell Brusselator and extended Brusselator systems. Zhou and Mu [39]
studied the stationary problem for the coupled two-cell Brusselator model [37]. Based
on the works of Ghergu [5] and Zhou and Mu [39], in [40], the first author of this
work investigated the pattern formation of a general coupled two-cell Brusselator-type
system in any spatial dimension.

In this paper, we attempt to further understand the influences of diffusion on pattern
formation in the two-cell coupled system (1.3) for any dimension N ≥ 1. Moreover,
the crucial role played by the autocatalysis order m in generating stationary patterns
is exhibited, concretely, if 0 < m ≤ 1 then no stationary patterns occur, while if
m > 1 then may exist such patterns. Our mathematical approach is based on a priori
estimates, topological degree theory and implicit function theorem.

Throughout this paper, the positive solution (u, v, w, z) satisfying (1.3) refers to
a classical one, i.e., (u, v, w, z) ∈ [C2(�)]4 such that u, v, w, z are positive on �.
Simple computation shows that
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(u∗, v∗, w∗, z∗) =
( a

am + b
, a,

a

am + b
, a

)

is the unique constant solution of (1.3) and it is clear that only nonnegative solutions
of (1.3) are of real interest.

The remaining part of this paper is organized as follows. In Sect. 2, we discuss
the stability of the unique constant steady state solution of (1.2). In Sect. 3, we estab-
lish a priori estimates for nonnegative solutions of (1.3). In Sect. 4, we consider the
non-existence of non-constant positive steady state solutions of (1.3), while Sect. 5 is
devoted to the existence of non-constant positive solutions to (1.3). Finally, we give
some discussion of our main results in Sect. 6.

2 Stability analysis

Let 0 = μ0 < μ1 < μ2 < · · · be the eigenvalues of the operator −� on � with the
homogeneous Neumann boundary condition. Set X j is the eigenspace corresponding
to μ j . Let

X =
{

(u, v, w, z) ∈
[
C2(�)

]4 | ∂νu = ∂νv = ∂νw = ∂νz = 0 on ∂�

}

,

{φ jl; l = 1, . . . , m(μ j )} be an orthonormal basis of X j , and X jl = {cφ jl | c ∈ R4}.
Here m(μ j ) is the multiplicity of μ j . Then

X =
∞⊕

j=0

X j and X j =
m(μ j )⊕

l=1

X jl .

We note that (1.2) has a unique nonnegative global solution (u, v, w, z) by stan-
dard theory of parabolic equations. The aim of this section is to prove the stability of
(u∗, v∗, w∗, z∗) to system (1.2).

Theorem 2.1 The positive equilibrium (u∗, v∗, w∗, z∗) to system (1.2) is uniformly
asymptotically stable provided that

mam < (am + b)(am + b + 1) (2.1)

and

μ1 >
1

d2

(m − 1)am − b

am + b
− 1

d1
(am + b). (2.2)

Proof The linearization of (1.2) at (u∗, v∗, w∗, z∗) is

∂

∂t

⎛

⎜
⎜
⎝

u
v

w

z

⎞

⎟
⎟
⎠ = L

⎛

⎜
⎜
⎝

u
v

w

z

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

g1(u − u∗, v − v∗, w − w∗, z − z∗)
g2(u − u∗, v − v∗, w − w∗, z − z∗)
g3(u − u∗, v − v∗, w − w∗, z − z∗)
g4(u − u∗, v − v∗, w − w∗, z − z∗)

⎞

⎟
⎟
⎠,
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where gi (y1, y2, y3, y4) = O(y2
1 + y2

2 + y2
3 + y2

4 ), i = 1, 2, 3, 4, and

L =

⎛

⎜
⎜
⎜
⎝

d1� − am − b −mam

am+b 0 0

am + b d2� + mam

am+b − c − 1 0 c

0 0 d1� − am − b −mam

am+b
0 c am + b d2� + mam

am+b − c − 1

⎞

⎟
⎟
⎟
⎠

.

For each j ( j = 0, 1, 2, . . .), X j is invariant under the operator L, and ξ j is an eigen-
value of L on X j if and only if ξ j is an eigenvalue of the following matrix

A j =

⎛

⎜
⎜
⎜
⎝

−d1μ j − am − b −mam

am+b 0 0
am + b − d2μ j + mam

am+b − c − 1 0 c
0 0 − d1μ j − am − b −mam

am+b
0 c am + b − d2μ j + mam

am+b − c − 1

⎞

⎟
⎟
⎟
⎠

,

i.e., ξ j satisfies the following equation

[

(−d1μ j − am − b − ξ j )

(

−d2μ j + mam

am + b
− 2c − 1 − ξ j

)

+ mam
]

×
[

(−d1μ j − am − b − ξ j )

(

−d2μ j + mam

am + b
− 1 − ξ j

)

+ mam
]

= 0.

Denote

B(1)
j =

(
−d1μ j − am − b −mam

am+b
am + b − d2μ j + mam

am+b − 1

)

,

B(2)
j =

(
−d1μ j − am − b −mam

am+b
am + b − d2μ j + mam

am+b − 2c − 1

)

.

From the above analysis, we know that ξ j is an eigenvalue of L if and only if ξ j is an

eigenvalue of B(1)
j or B(2)

j . So, in order to analyze the eigenvalue of L, it is sufficient

to analyze the eigenvalue of B(1)
j and B(2)

j .

We first consider the matrix B(1)
j . The direct calculation gives

det B(1)
j = μ j

[
d1d2μ j + d2(a

m + b) + d1

(
1 − mam

am + b

)]
+ (am + b),

TrB(1)
j = −(d1 + d2)μ j + mam

am + b
− (am + b + 1),

where detB(1)
j and TrB(1)

j are respectively the determinant and trace of B(1)
j . Note

that μ0 = 0, and so it is easy to check that detB(1)
j > 0 and TrB(1)

j < 0 under the
conditions of Theorem 2.1.
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As above, we then consider the matrix B(2)
j . By virtue of

det B(2)
j = μ j

[
d1d2μ j + d2(a

m + b) + d1

(
1 + 2c − mam

am + b

)]
+ (am + b),

TrB(2)
j = −(d1 + d2)μ j + mam

am + b
− (am + b + 2c + 1),

we can easily check that detB(2)
j > 0 and TrB(2)

j < 0.
A similar argument to [7] gives that the spectrum of L lies in {Re ξ < −δ} for

some positive δ independent of j ≥ 0. It is known that (u∗, v∗, w∗, z∗) is uniformly
asymptotically stable and the proof is complete. 	


If 0 < m ≤ 1, then conditions (2.1) and (2.2) are satisfied. In this case, we have

Corollary 2.1 If 0 < m ≤ 1 holds, then (u∗, v∗, w∗, z∗) to system (1.2) is uniformly
asymptotically stable.

Remark 2.1 From Theorem 2.1 and Corollary 2.1, we see that the positive con-
stant solution (u∗, v∗, w∗, z∗) to system (1.2) is uniformly asymptotically stable if (i)
0 < m ≤ 1, or (ii) m > 1, a, b, m satisfying (2.1) be fixed, and d1 is small or d2
is large such that (2.2) holds. As a result, in the above two cases, it is impossible to
expect the bifurcation of (1.3) near (u∗, v∗, w∗, z∗), and it seems difficult to capture
the patterns of (1.3). In turn, when m > 1, d1 is large or d2 is small, such that (2.2)
dose not hold, then system (1.3) may have non-constant positive solutions, as will be
seen in Sect. 5.

3 A priori estimates

In this section, we are ready to derive a priori upper and lower bounds for all positive
solutions to (1.3). To this end, we first cite a known result.

Lemma 3.1 (Maximum principle [41]) Suppose that g ∈ C(� × R).

(i) Assume that w ∈ C2(�) ∩ C1(�) and satisfies

�w(x) + g(x, w(x)) ≥ 0 in �, ∂νw ≤ 0 on ∂�.

If w(x0) = max� w, then g(x0, w(x0)) ≥ 0.
(ii) Assume that w ∈ C2(�) ∩ C1(�) and satisfies

�w(x) + g(x, w(x)) ≤ 0 in �, ∂νw ≥ 0 on ∂�.

If w(x0) = min� w, then g(x0, w(x0)) ≤ 0.
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Theorem 3.1 Every positive solution (u, v, w, z) of (1.3) satisfies

a

b + 2mam(1 + d1
d2b )m

≤ u(x) ≤ a

b
, (3.1)

ab

(c + 1)
[
b + 2mam(1 + d1

d2b )m
] ≤ v(x) ≤ 2a

(
1 + d1

d2b

)
, (3.2)

a

b + 2mam(1 + d1
d2b )m

≤ w(x) ≤ a

b
, (3.3)

and

ab

(c + 1)
[
b + 2mam(1 + d1

d2b )m
] ≤ z(x) ≤ 2a

(

1 + d1

d2b

)

. (3.4)

Proof Suppose that (u, v, w, z) is a positive solution of (1.3). We set

u(x1) = max
�

u, v(x2) = max
�

v, w(x3) = max
�

w, z(x4) = max
�

z,

and

u(y1) = min
�

u, v(y2) = min
�

v, w(y3) = min
�

w, z(y4) = min
�

z.

Applying Lemma 3.1 to the first equation in (1.3), we obtain that

a − u(x1)v
m(x1) − bu(x1) ≥ 0,

which implies

u(x1) ≤ 1

b

[
a − u(x1)v

m(x1)
]

≤ a

b
. (3.5)

Using the same argument as above, we have

a − w(x3)z
m(x3) − bw(x3) ≥ 0,

which yields

w(x3) ≤ 1

b

(
a − w(x3)z

m(x3)
) ≤ a

b
. (3.6)

Set φ = d1(u + w) + d2(v + z). Adding the first four relations in (1.3), one gets

−�φ = 2a − (v + z) in �, ∂νφ = 0 on ∂�.
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Let now x5 ∈ � be a maximum point of φ. According to Lemma 3.1 we have

2a − (v(x5) + z(x5)) ≥ 0,

that is, v(x5) + z(x5) ≤ 2a. By virtue of (3.5) and (3.6), it follows that

d2v(x2) ≤ φ(x2) ≤ φ(x5) = d1(u(x5) + w(x5)) + d2(v(x5) + z(x5))

≤ d1(u(x1) + w(x3)) + 2ad2 ≤ 2a

(
d1

b
+ d2

)

.

This yields

v(x2) ≤ 2a
(

1 + d1

bd2

)
. (3.7)

Arguing in a similar way, we can obtain that

d2z(x4) ≤ φ(x4) ≤ φ(x5) = d1(u(x5) + w(x5)) + d2(v(x5) + z(x5))

≤ d1(u(x1) + w(x3)) + 2ad2 ≤ 2a

(
d1

b
+ d2

)

,

which implies

z(x4) ≤ 2a
(

1 + d1

bd2

)
. (3.8)

On the other hand, by the first equation of (1.3) and Lemma 3.1, we obtain

a − u(y1)v
m(y1) − bu(y1) ≤ 0,

that is,

a ≤ u(y1)
(
b + vm(y1)

)
,

which combined with (3.7) yields

u(y1) ≥ a

b + vm(y1)
≥ a

b + 2mam
(

1 + d1
bd2

)m . (3.9)

Similarly, applying Lemma 3.1 to the third equation in (1.3) yields

a − w(y3)z
m(y3) − bw(y3) ≤ 0 ⇒ a ≤ w(y3)

(
b + zm(y3)

)
,

which implies

w(y3) ≥ a

b + zm(y3)
≥ a

b + 2mam
(

1 + d1
bd2

)m . (3.10)
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Next, by the second equation of (1.3) and Lemma 3.1, we have

u(y2)v
m(y2) + bu(y2) − v(y2) + c(z(y2) − v(y2)) ≤ 0.

In view of (3.9), the above inequality becomes

(c + 1)v(y2) ≥ u(y2)v
m(y2) + bu(y2) + cz(y2) ≥ bu(y2)

≥ bu(y1) ≥ ab

b + 2mam
(

1 + d1
bd2

)m .

Therefore, we find that

v(y2) ≥ ab

(c + 1)
[
b + 2mam

(
1 + d1

d2b

)m] . (3.11)

Arguing in a similar way, Lemma 3.1 applied to the forth equation of (1.3) yields

z(y4) ≥ ab

(c + 1)
[
b + 2mam

(
1 + d1

d2b

)m ] . (3.12)

In view of (3.5)–(3.12) we obtain Theorem 3.1. 	

From Theorem 3.1, the following corollary is obvious.

Corollary 3.1 Let a, b, c, m, D1, D2 > 0 be fixed. Then, there exist two positive con-
stants C1, C2 > 0 depending on a, b, c, m, D1, D2 such that for all 0 < d1 ≤ D1
and d2 ≥ D2, every positive solution (u, v, w, z) of (1.3) satisfies

C1 < u, v, w, z < C2 in �.

Using the standard results of elliptic regularity and embedding theory (see, e.g.,
[42]), we can further improve Corollary 3.1 and obtain the following result.

Theorem 3.2 Let a, b, c, m, D1, D2 > 0 be fixed. Then, for any positive integer k ≥ 1
there exists a constant

C = C(a, b, c, m, D1, D2, k, N ,�) > 0

such that for all 0 < d1 ≤ D1 and d2 ≥ D2, every positive solution (u, v, w, z) of
(1.3) belongs to [C∞(�)]4 and satisfies

‖ u ‖Ck (�) + ‖ v ‖Ck (�) + ‖ w ‖Ck (�) + ‖ z ‖Ck (�)≤ C.
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4 Non-existence of non-constant positive solutions

In this section, by using the implicit function theorem, we investigate the non-existence
of non-constant positive solutions of (1.3) in two cases: (i) d2 is large enough; (ii) a
is small enough. Our idea comes from [10,43]. First of all, we prove the following
result.

Lemma 4.1 (i) Fix a, b, c, m and d1. Let (ui , vi , wi , zi ) be the positive solution
of (1.3) with d2 = d2,i and d2,i → ∞ as i → ∞. Then (ui , vi , wi , zi ) →
(u∗, v∗, w∗, z∗) in [C2(�)]4 as i → ∞.

(ii) Fix b, c, m, d1 and d2. Let (ui , vi , wi , zi ) be the positive solution of (1.3) with
a = ai and ai → 0 as i → ∞. Then (ui , vi , wi , zi ) → (0, 0, 0, 0) in [C2(�)]4

as i → ∞.

Proof We first prove (i). By Theorem 3.1, the embedding theory and the standard reg-
ularity theory of elliptic equations (see [42]), there is a subsequence of (ui , vi , wi , zi ),
also labelled by itself, such that (ui , vi , wi , zi ) → (u, v, w, z) in [C2(�)]4 as i →∞.

Moreover, v ≡ δ and z ≡ η, where δ and η are positive constants and (u, δ, w, η)

solves
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−d1�u = a − δmu − bu in �,∫

�
[δmu + bu − δ + c(η − δ)]dx = 0,

−d1�w = a − ηmw − bw in �,∫

�
[ηmw + bw − η + c(δ − η)]dx = 0,

∂νu = ∂νw = 0 on ∂�.

(4.1)

From the first equation of (4.1), we see u = a
δm+b . Substituting u = a

δm+b in the
second equation of (4.1), we have

∫

�

[a − δ + c(η − δ)]dx = 0. (4.2)

Similarly, we get from the third and fourth equations of (4.1) that

w = a

ηm + b
,

∫

�

[a − η + c(δ − η)]dx = 0. (4.3)

Then it follows from (4.2) and the second equality of (4.3) that

∫

�

[2a − (δ + η)]dx = 0,

i.e., δ + η = 2a, substituting δ = 2a − η into the second equality of (4.3) yields

∫

�

(1 + 2c)(a − η)dx = 0,
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that is, η = a. In view of δ + η = 2a, we get δ = a. Then we obtain u = w = a
am+b .

This ends the proof of the result (i).
Next, we prove (ii). Similar to the proof of (i), we get (ui , vi , wi , zi ) →

(u, v, w, z) in [C2(�)]4as i → ∞ and (u, v, w, z) satisfies
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−d1�u = −uvm − bu in �,

−d2�v = uvm + bu − v + c(z − v) in �,

−d1�w = −wzm − bw in �,

−d2�z = wzm + bw − z + c(v − z) in �,

∂νu = ∂νv = ∂νw = ∂νz = 0 on ∂�.

(4.4)

It is clear that system (4.4) is the special case of system (1.3) when a = 0. Therefore,
the estimates (3.1)–(3.4) in Theorem 3.1 imply that u = v = w = z ≡ 0. The proof
of (ii) is complete and we get Lemma 4.1. 	


Now, we state our main result in this section.

Theorem 4.1 (i) Let a, b, c, m, d1 > 0 be fixed. There exists D > 0, which depends
only on a, b, c, m, d1 and �, such that (1.3) has no non-constant solution for all
d2 > D.

(ii) Let b, c, m, d1, d2 > 0 be fixed. There exists A > 0, which depends only
on b, c, m, d1, d2 and �, such that (1.3) has no non-constant solution for all
0 < a < A.

Proof First, we prove (i). Define W 2,2
ν (�) = {g ∈ W 2,2(�)| ∂νg = 0 on ∂�} and

W 2,2
ν,0 (�) = W 2,2

ν (�) ∩ L2
0(�), where L2

0(�) = {g ∈ L2(�)| ∫

�
g dx = 0}. Denote

ρ = d−1
2 and Pz = z − 1

|�|
∫

�
zdx . We make the decomposition:

v = ṽ + ξ, z = z̃ + η,

where ṽ, z̃ ∈ W 2,2
ν,0 and ξ, η ∈ R+. Define

F(ρ, u, ṽ, ξ, w, z̃, η) = ( f1, f2, f3, f4, f5, f6)
T ,

f1(ρ, u, ṽ, ξ, w, z̃, η) = �u + d−1
1

[
a − u(ξ + ṽ)m − bu

]
,

f2(ρ, u, ṽ, ξ, w, z̃, η) = �ṽ+ρP
[
u(ξ + ṽ)m + bu − (ξ + ṽ)+c(η + z̃ − ṽ − ξ)

]
,

f3(ρ, u, ṽ, ξ, w, z̃, η) =
∫

�

[
u(ξ + ṽ)m + bu − (ξ + ṽ) + c(η + z̃ − ṽ − ξ)

]
dx,

f4(ρ, u, ṽ, ξ, w, z̃, η) = �w + d−1
1

[
a − w(η + z̃)m − bw

]
,

f5(ρ, u, ṽ, ξ, w, z̃, η) = �z̃+ρP
[
w(η + z̃)m + bw−(η + z̃)+c(ξ + ṽ − z̃ − η)

]
,

f6(ρ, u, ṽ, ξ, w, z̃, η) =
∫

�

[
w(η + z̃)m + bw − (η + z̃) + c(ξ + ṽ − z̃ − η)

]
dx .

Then

F : R+ × (W 2,2
ν (�) × W 2,2

ν,0 (�) × R+)2 → (L2(�) × L2
0(�) × R)2,
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and, for any ρ > 0, (u, v, w, z) solves (1.3) is equivalent to solving

F(ρ, u, ṽ, ξ, w, z̃, η) = 0.

It is clear that, for any ρ, we have F(ρ, u∗, 0, v∗, w∗, 0, z∗) = 0.

Let � be the Fréchet derivative of F at (0, u∗, 0, v∗, w∗, 0, z∗) with respect to
(u, ṽ, ξ, w, z̃, η). It is easy to see that

� ≡ D(u, ṽ,ξ, w, z̃, η)F(0, u∗, 0, v∗, w∗, 0, z∗) :
(

W 2,2
ν (�) × W 2,2

ν,0 (�) × R
)2 →

(
L2(�) × L2

0(�) × R
)2

,

and

�(û, v̂, ξ̂ , ŵ, ẑ, η̂)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�û + d−1
1

[
− (am + b)û − mam

am+b (v̂ + ξ̂ )
]

�v̂∫

�

[
(am + b)û +

( mam

am + b
− c − 1

)
(v̂ + ξ̂ ) + c(ẑ + η̂)

]
dx

�ŵ + d−1
1

[
− (am + b)ŵ − mam

am+b (ẑ + η̂)
]

�ẑ∫

�

[
(am + b)ŵ +

( mam

am + b
− c − 1

)
(ẑ + η̂) + c(v̂ + ξ̂ )

]
dx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In order to use the implicit function theorem, we have to verify that � is both invertible
and surjective. In fact, assume that �(û, v̂, ξ̂ , ŵ, ẑ, η̂) = (0, 0, 0, 0, 0, 0), then v̂ ≡ 0
and ẑ ≡ 0. In the following, we will prove û = ŵ = ξ̂ = η̂ = 0 and so � is invert-
ible. In view of v̂ ≡ 0 and ẑ ≡ 0,�(û, v̂, ξ̂ , ŵ, ẑ, η̂) = (0, 0, 0, 0, 0, 0) becomes as
following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�û + d−1
1

[
− (am + b)û − mam

am+b ξ̂
]

= 0 in �,
∫

�

[
(am + b)û +

( mam

am + b
− c − 1

)
ξ̂ + cη̂

]
dx = 0,

�ŵ + d−1
1

[
− (am + b)ŵ − mam

am+b η̂
]

= 0 in �,
∫

�

[
(am + b)ŵ +

( mam

am + b
− c − 1

)
η̂ + cξ̂

]
dx = 0,

∂ν û = ∂νŵ = 0 on ∂�.

(4.5)

Multiplying the first equation of (4.5) with (am + b)û + mam

am+b ξ̂ and then integrating

over �, noting that ξ̂ ∈ R, we obtain

0 ≤ d1(a
m + b)

∫

�

|∇û|2dx = −
∫

�

[
(am + b)û + mam

am + b
ξ̂
]2

dx ≤ 0.
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Hence

û ≡ − mam

(am + b)2 ξ̂ . (4.6)

Substituting (4.6) into the second equation of (4.5), we have

∫

�

[(−1 − c)ξ̂ + cη̂]dx = 0.

In view of ξ̂ , η̂ ∈ R, one gets

(−1 − c)ξ̂ + cη̂ = 0. (4.7)

Similarly, by the third and fourth equations of (4.5) we obtain

ŵ ≡ − mam

(am + b)2 η̂, (4.8)

and

(−1 − c)η̂ + cξ̂ = 0. (4.9)

(4.7) combined with (4.9) yields ξ̂ = η̂ = 0. By (4.6) and (4.8) we have û = ŵ = 0
and so � is invertible. Similarly, we also easily see that � is a surjection. By the
implicit function theorem, there exists ρ0, r0 > 0 such that (u∗, 0, v∗, w∗, 0, z∗) is
the unique solution of

F(ρ, u, ṽ, ξ, w, z̃, η) = 0 in [0, ρ0] × Br0(u
∗, 0, v∗, w∗, 0, z∗),

where Br0(u
∗, 0, v∗, w∗, 0, z∗) denotes the open ball in (W 2,2

ν (�)× W 2,2
ν,0 (�)×R+)2

centered at (u∗, 0, v∗, w∗, 0, z∗) with radius r0. Taking smaller ρ0 and r0 if necessary,
we can deduce the conclusion (i) in Theorem 4.1 by use of (i) of Lemma 4.1.

The proof of (ii) is similar. Define F(a, u, v, w, z) : R+ × (W 2,2
ν (�))4 →

(L2(�))4, by

F(a, u, v, w, z) =

⎛

⎜
⎜
⎝

d1�u + a − uvm − bu
d2�v + uvm + bu − v + c(z − v)

d1�w + a − wzm − bw

d2�z + wzm + bw − z + c(v − z)

⎞

⎟
⎟
⎠.
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It is easy to see that

D(u,v,w,z)F(0, 0, 0, 0, 0)

=

⎛

⎜
⎜
⎝

d1� − b 0 0 0
b d2� − c − 1 0 c
0 0 d1� − b 0
0 c b d2� − c − 1

⎞

⎟
⎟
⎠

is a bijection from (W 2,2
ν (�))4 → (L2(�))4. Thus, (ii) of Lemma 4.1 and the implicit

function theorem yield our assertion. This concludes our proof. 	


5 Existence of non-constant positive solutions

This section is devoted to the existence of non-constant positive solutions to (1.3). For
our purpose, we start with some preliminary results.

First of all, we write

u = (u, v, w, z), u∗ = (u∗, v∗, w∗, z∗),

G(u) =

⎛

⎜
⎜
⎝

d−1
1 (a − uvm − bu)

d−1
2

[
uvm + bu − v + c(z − v)

]

d−1
1 (a − wzm − bw)

d−1
2

[
wzm + bw − z + c(v − z)

]

⎞

⎟
⎟
⎠

and

A =

⎛

⎜
⎜
⎜
⎜
⎝

− 1
d1

(am + b) − 1
d1

mam

am+b 0 0
1
d2

(am + b) 1
d2

(
mam

am+b − c − 1
)

0 c
d2

0 0 − 1
d1

(am + b) − 1
d1

mam

am+b

0 c
d2

1
d2

(am + b) 1
d2

(
mam

am+b − c − 1
)

⎞

⎟
⎟
⎟
⎟
⎠

.

Then DuG(u∗) = A. Moreover, (1.3) can be written as

{−�u = G(u), x ∈ �,

∂νu = 0, x ∈ ∂�,
(5.1)

and u is a positive solution to (5.1) if and only if

F(u) := u − (I − �)−1(G(u) + u) = 0 on X,

where (I − �)−1 is the inverse of I − � with the homogeneous Neumann boundary
condition. A direct computation gives

DuF(u∗) = I − (I − �)−1(A + I). (5.2)
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In order to apply the degree theory to obtain the existence of non-constant positive
solutions, our first aim is to compute the index of F(u) at u∗. By the Leray–Schauder
Theorem (see [44]), we have that if 0 is not the eigenvalue of (5.2), then

index(F , u∗) = (−1)r ,

where r is the number of negative eigenvalues of (5.2).
A straightforward computation shows that, for each integer j ≥ 0, X j is invariant

under DuF(u∗), and ξ j is an eigenvalue of DuF(u∗) on X j if and only if it is an
eigenvalue of the matrix of 1

1+μ j
(μ j I − A). Thus, DuF(u∗) is invertible if and only

if, for all j ≥ 0, the matrix μ j I − A is nonsingular. Denote

H(a, b, c, m, d1, d2, μ) := det(μI − A),

we also have that, if H(a, b, c, m, d1, d2, μ j ) �= 0, the number of negative eigenvalues
of DuF(u∗) on X j is odd if and only if H(a, b, c, m, d1, d2, μ j ) < 0.

Note that m(μ j ) is the algebraical multiplicity of μ j . By similar arguments as in
[18], it can be shown that the following proposition holds.

Proposition 5.1 Suppose that, for all j ≥ 0, the matrix μ j I − A is nonsingular. Then

index(F(·), u∗) = (−1)r , where r =
∑

j≥0, H(a,b,c,m,d1,d2,μ j )<0

m(μ j ).

To compute index(F(·), u∗), we have to consider the sign of H(a, b, c, m, d1, d2, μ).

H(a, b, c, m, d1, d2, μ)

=

∣
∣
∣
∣
∣
∣
∣
∣

μ + 1
d1

(am + b) 1
d1

mam
am+b 0 0

− 1
d2

(am + b) μ − 1
d2

(
mam

am+b − c − 1
)

0 − c
d2

0 0 μ + 1
d1

(am + b) 1
d1

mam
am+b

0 − c
d2

− 1
d2

(am + b) μ − 1
d2

(
mam

am+b − c − 1
)

∣
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣

μ + 1
d1

(am + b) 1
d1

mam
am+b

− 1
d2

(am + b) μ − 1
d2

(
mam

am+b − c − 1
)

∣
∣
∣
∣ ·

∣
∣
∣
∣

μ + 1
d1

(am + b) 1
d1

mam
am+b

− 1
d2

(am + b) μ − 1
d2

(
mam

am+b − c − 1
)

∣
∣
∣
∣

+
∣
∣
∣
∣
∣

μ + 1
d1

(am + b) 0
− 1

d2
(am + b) − c

d2

∣
∣
∣
∣
∣
·
∣
∣
∣
∣
∣

0 μ + 1
d1

(am + b)

− c
d2

− 1
d2

(am + b)

∣
∣
∣
∣
∣

=
[
μ2 +

(am + b

d1
− 1

d2

( mam

am + b
− 1 − 2c

))
μ + 1

d1d2
(1 + 2c)(am + b)

]

×
[
μ2 +

(am + b

d1
− 1

d2

( mam

am + b
− 1

))
μ + 1

d1d2
(am + b)

]
. (5.3)
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Assume that

θ1 := 1

d2

( mam

am + b
− 1

)
− am + b

d1
> 0, (5.4)

θ2 := 1

d2

( mam

am + b
− 1 − 2c

)
− am + b

d1
> 0, (5.5)

θ2
1 − 4(am + b)

d1d2
> 0, (5.6)

and

θ2
2 − 4(1 + 2c)(am + b)

d1d2
> 0. (5.7)

Then H(a, b, c, m, d1, d2, μ) = 0 has exactly four positive solutions μ∗
1 < μ∗

2 <

μ∗
3 < μ∗

4 given by

μ∗
1 := μ∗

1(a, b, d1, d2) = 1

2
θ1 − 1

2

√

θ2
1 − 4(am + b)

d1d2
,

μ∗
2 := μ∗

2(a, b, c, d1, d2) = 1

2
θ2 − 1

2

√

θ2
2 − 4(am + b)(1 + 2c)

d1d2
,

μ∗
3 := μ∗

3(a, b, c, d1, d2) = 1

2
θ2 + 1

2

√

θ2
2 − 4(am + b)(1 + 2c)

d1d2
,

μ∗
4 := μ∗

4(a, b, d1, d2) = 1

2
θ1 + 1

2

√

θ2
1 − 4(am + b)

d1d2
.

Also

H(a, b, c, m, d1, d2, μ) < 0 if and only if μ ∈ (μ∗
1, μ

∗
2) ∪ (μ∗

3, μ
∗
4).

In the following, we simplify the conditions (5.4)–(5.7). By (5.5) and (5.7), we have

1

d2

(
mam

am + b
− 1 − 2c

)

− am + b

d1
> 2

√
(am + b)(2c + 1)

d1d2
,

which implies

1

d2

mam

am + b
>

(√
2c + 1

d2
+

√
am + b

d1

)2

,
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i.e.,

mam

am + b
>

(√
d2

d1
(am + b) + √

2c + 1

)2

. (5.8)

As above, by (5.4) and (5.6), we have

mam

am + b
>

(√
d2

d1
(am + b) + 1

)2

. (5.9)

Obviously, (5.8) implies (5.9). On the other hand, if (5.8) holds, we can easily obtain
that the four inequalities (5.4)–(5.7) hold. Therefore, the inequality (5.8) is equivalent
to the system of inequalities being imposed of (5.4)–(5.7).

Remark 5.1 Let m > 1 and (2c +1−m)am + (2c +1)b < 0 be satisfied. Then (5.8)
holds if d2 is small enough or d1 is large enough.

By applying similar arguments as in [7], we can claim the main result of this section
as follows.

Theorem 5.1 Let m > 1 be fixed. Assume that (5.8) holds and there exist 0 ≤ i <

j < h < l such that u∗
1 ∈ (μi , μi+1), u∗

2 ∈ (μ j , μ j+1), u∗
3 ∈ (μh, μh+1), u∗

4 ∈
(μl , μl+1) and

∑ j
k=i+1 m(μk) + ∑l

k=h+1 m(μk) is odd. Then (1.3) has at least one
non-constant positive solution.

Proof By Theorem 4.1 (i) and (5.3) we can fix D large enough, such that system (1.3)
with d2 = D has no non-constant solutions and

H(a, b, c, m, d1, D, μ) > 0

for all μ ≥ 0. Moreover, by Corollary 3.1 there exists M > 0 depending on
a, b, c, m, d1, d2 such that for any d̂ > d2, any positive solution (u, v, w, z) of (1.3)
with diffusion coefficients d1 and d̂ satisfies

1

M
< u, v, w, z < M in �.

Set

� =
{
(u, v, w, z) ∈

[
C1(�)

]4 | 1

M
< u, v, w, z < M

}
,

and define

� : [0, 1] × � →
[
C1(�)

]4
,
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by

�(t, u) = (I − �)−1

⎛

⎜
⎜
⎜
⎜
⎝

u + 1
d1

(a − uvm − bu)

v +
(

1−t
D + t

d2

)
(uvm + bu − v + c(z − v))

w + 1
d1

(a − wzm − bw)

z +
(

1−t
D + t

d2

)
(wzm + bw − z + c(v − z))

⎞

⎟
⎟
⎟
⎟
⎠

.

It is easy to see that solving (1.3) is equivalent to finding a fixed point of �(1, ·)
in �. Furthermore, from the definition of � and Corollary 3.1, we have that �(t, ·)
has no fixed points in ∂� for all 0 ≤ t ≤ 1. Since �(t, ·) : [0, 1] × � → [C1(�)]4 is
compact, the degree deg(I−�(t, ·),�, 0) is well defined. By the homotopy invariance
of degree, we can conclude

deg(I − �(1, ·),�, 0) = deg(I − �(0, ·),�, 0). (5.10)

Recall that the choice of D, we have that H(a, b, c, m, d1, D, μ) > 0 and u∗ is the
only fixed point of �(0, ·). From Proposition 5.1, it follows that

deg(I − �(0, ·),�, 0) = index(I − �(0, ·), u∗) = 1. (5.11)

On the contrary, we assume that (1.3) has no non-constant solution. By Proposition
5.1 again, we obtain that

deg(I − �(1, ·),�, 0) = index(I − �(1, ·), u∗)

= (−1)
∑ j

k=i+1 m(μk )+∑l
j=h+1 m(μk ) = −1. (5.12)

Now, from (5.10)–(5.12), we get a contradiction. Therefore there exists a non-constant
solution of (1.3), and the proof is complete. 	

Corollary 5.1 Let a, b, c, d1 > 0 and m > 1 be fixed. Suppose that

(2c + 1 − m)am + (2c + 1)b < 0 (5.13)

and the eigenvalue μ j is simple for each j ≥ 1. Then, there exists an interval sequence
{(λn,�n)}∞n=1 with λn, �n → 0 as n → ∞, such that (1.3) has at least one non-con-
stant positive solution for all d2 ∈ (λn,�n).

Proof In view of (5.13), condition (5.8) holds for small values of d2 > 0. Also as
d2 → 0, we have

μ∗
1 → (am + b)2

d1 [(m − 1)am − b]
, μ∗

2 → (1 + 2c)(am + b)2

d1 [(m − 1 − 2c)am − (1 + 2c)b]
,

and

μ∗
3 → +∞, μ∗

4 → +∞.
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Moreover,

μ∗
4 − μ∗

3 = 1

2
(θ1 − θ2) + 1

2

{√

θ2
1 − 4(am + b)

d1d2
−

√

θ2
2 − 4(1 + 2c)(am + b)

d1d2

}

.

A direct calculation shows that μ∗
4 − μ∗

3 → +∞ as d2 → 0. Thus, we can find a
sequence of intervals {(λn,�n)}∞n=1 such that

∑

k≥1, μ∗
1<μk<μ∗

2

m(μk) +
∑

k≥1, μ∗
3<μk<μ∗

4

m(μk) is odd

for all d2 ∈ (λn,�n) (n ≥ 1). The conclusion follows now from Theorem 5.1. 	

Corollary 5.2 Let a, b, c, d2 > 0 and m > 1 be fixed. Suppose that (5.13) holds and
for some h, l ≥ 1,

(i) (m−1−2c)am−(1+2c)b
d2(am+b)

∈ (μh, μh+1),
(m−1)am−b

d2(am+b)
∈ (μl , μl+1);

(ii)
∑l

k=h+1 m(μk) is even.

Then, there exists D > 0 such that system (1.3) has at least one non-constant
positive solution for any d1 > D.

Proof By virtue of (5.13), we take d1 sufficiently large such that condition (5.8) holds.
For fixed a, b, c, m, d2, we have

μ∗
1 → 0, μ∗

2 → 0,

and

μ∗
3 → (m − 1 − 2c)am − (1 + 2c)b

d2(am + b)
, μ∗

4 → (m − 1)am − b

d2(am + b)
,

as d1 → ∞. Thus, for d1 > 0 large enough we have

μ∗
1, μ∗

2 ∈ (μ0, μ1), μ∗
3 ∈ (μh, μh+1), μ∗

4 ∈ (μl , μl+1).

By Proposition 5.1 we obtain

∑

k≥1, μ∗
1≤μk≤μ∗

2

m(μk) = (−1)0 = 1.

Therefore

∑

k≥1, μ∗
1≤μk≤μ∗

2

m(μk) +
∑

k≥1, μ∗
3≤μk≤μ∗

4

m(μk) is odd
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since
∑l

k=h+1 m(μk) is even. Then, the conditions in Theorem 5.1 are fulfilled and
we complete the proof. 	


6 Conclusions

In this paper, we analyze a two-cell coupled isothermal chemical system with arbitrary
powers of autocatalysis. It is assumed that the cells are sufficiently thin so that trans-
verse diffusion across them can be considered to be instantaneous. So we study two
identical regions, divided by a semipermeable membrane which allows the passage of
autocatalyst B only, with some reaction taking place in each region. Here, we consider
the general case, i.e., the autocatalysis order m is any positive number and the spatial
dimension N is an arbitrary positive integer.

We summarize the effects of autocatalysis order and diffusion coefficients to the
pattern formation and hope to reveal some interesting phenomena of pattern formation
in chemical system. First of all, from Corollary 2.1, we know that the autocatalysis
order m plays an important role in generating the stationary patterns. More precisely,
if 0 < m ≤ 1 then no stationary patterns occur, while if m > 1, from Theorem 5.1,
there exist such patterns on the condition that (5.8) holds. Secondly, from Theorem
4.1, the large diffusion rate of autocatalyst B can lead to the non-existence of spatial
pattern, while from Corollaries 5.1 and 5.2, a large diffusion rate of reactant A or
small diffusion rate of autocatalyst B will help the generation of patterns. These dem-
onstrate that, in a chemical model, different autocatalysis orders or diffusions may
play essentially different roles in developing spatial patterns.
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